Identification of genes potentially involved in LMO2-induced leukemogenesis


The most common translocations in childhood T cell acute lymphoblastic leukemias involve the LMO2 locus on chromosome 11p13 and cause ectopic expression of the LMO2 gene in thymocytes. Transgenic mice with enforced expression of LMO2 in their thymocytes develop T cell leukemias thus demonstrating the role of LMO2 in leukemogenesis. The physiologic and leukemogenic functions of LMO2 are mediated through its transcriptional regulatory activities, but the identity of the target genes is completely unknown. In this report, we have used cDNA representational difference analysis (cDNA-RDA) to identify genes that are over-expressed and are likely to play a role in the LMO2 induced leukemias. cDNA-RDA was performed using very small amounts of mRNA pool (from 1 μg of total RNA) to reverse transcribe the cDNAs from leukemic cells or normal thymocytes. The cDNA-RDA led to the isolation of nine distinct clones that were specifically overexpressed in the leukemic cells. Sequence analysis revealed that five of the nine clones had identity or homology to known genes that are known to play a role in the pathogenesis of leukemias or other cancers. Three clones had no significant homology to any known genes and thus represent novel candidate genes. Our study demonstrates that cDNA-RDA using very small amounts of total RNA is a highly efficient method to identify novel genes that may play a role in leukemogenesis.


    1 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)